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Purple bacteria are predominantly aquatic microor-
ganisms and are widespread in fresh and marine water-
bodies and in hot springs. 

 

R

 

. 

 

palustris

 

 is a purple non-
sulfur bacterium. It is commonly recognized that

 

R

 

. 

 

palustris

 

 is among the most metabolically versatile
bacteria ever studied: it grows both in the presence of
oxygen, oxidizing organic substances in the process of
respiration, and in its absence, carrying out photosyn-
thesis. The capacities of 

 

R

 

. 

 

palustris

 

 for lithotrophic
(with hydrogen, sulfide, and thiosulfate), organ-
otrophic, heterotrophic, and autotrophic growth (with
CO

 

2

 

 assimilation via the ribulose–bisphosphate cycle)
are also known [1]. Thus, the bacterium 

 

R

 

. 

 

palustris

 

f-8pt is a convenient model for studying metabolism
regulation.

Earlier, it was shown that 

 

Beggiatoa

 

 

 

leptomitiformis

 

cells may contain malate dehydrogenase (MDH) iso-
forms that are formed from the same subunits but have
either a dimeric or a tetrameric structure, are involved
in differently directed metabolic flows, and differ in
kinetic properties [2–5]. In anaerobic phototrophs such
as 

 

Rhodobacter

 

 

 

capsulatus

 

, 

 

Rhodospirillum

 

 

 

rubrum

 

,

 

and 

 

Rhodomicrobium

 

 

 

vannielii

 

, only the tetramer form,
which allows anabolic reactions, was revealed [6]. Bac-
teria of the species 

 

R

 

. 

 

palustris

 

 are characterized by
high metabolic versatility and are capable of all types of
nutrition [7]. It is known that bacteria usually do not
feature isoenzymatic polymorphism, which determines
multifunctionality of the malate dehydrogenase system

in eukaryotic cells by means of different subcellular
localization of the isoenzymes [8]. For 

 

R

 

. 

 

palustris

 

, the
existence of only one MDH-encoding gene is known
[9]. Along these lines, the study of the structural orga-
nization of the malate dehydrogenase enzyme system
in 

 

R

 

. 

 

palustris

 

 f-8pt cells grown under conditions of
functioning of two different MDH-involving metabolic
pathways was of interest.

MATERIALS AND METHODS

 

The organism and cultivation conditions.

 

 The
subject of this study was the phototrophic purple non-
sulfur bacterium 

 

Rhodopseudomonas

 

 

 

palustris

 

 f-8pt,
isolated from the Goryachii thermal brook in the
Karymskii volcanic region (Kamchatka). The bacte-
rium was grown under photo- and chemotrophic condi-
tions, organo- and lithotrophically and hetero- and
autotrophically. Pfennig medium was used for organo-
trophic cultivation of the bacterium [10]. For photoau-
totrophic growth, the medium of the same composition
was used with the addition of 2 g/l of Na

 

2

 

S

 

2

 

O

 

3 

 

·

 

 5

 

H

 

2

 

O.
After sterilization (1 atm), NaHCO

 

3

 

 was added to the
medium (0.2 g/l for organotrophic cultivation and 1 g/l
for autotrophic cultivation). Before inoculation, vita-
mins and trace elements were introduced into the media
[10]. Cell suspensions were obtained by culture centrif-
ugation at 

 

8000 

 

g

 

 for 15 min, washing of the cells, and
resuspending in 0.05 M Tris–HCl buffer, pH 7.5.

 

Methods for determining enzyme activity.

 

 The
activity of TCA and glyoxylate cycle enzymes was
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determined by the methods described in [11–15]. The
total amount of protein was determined by the method
of Lowry et al. [16].

 

MDH purification.

 

 In order to obtain highly puri-
fied MDH preparations, a purification scheme was
developed that included obtaining of enzyme extract,
gel filtration on a Sephadex G-25 column (Pharmacia,
Sweden), fractionation with ammonium sulfate (45–
80%), and ion-exchange chromatography on a DEAE-
Toyopearl column.

 

Determination of the molecular mass of native
enzyme.

 

 In order to determine the molecular mass of
native MDH, gel chromatography through Sephadex
G-200 (Pharmacia, Sweden) was used [17].

 

Electrophoresis.

 

 Electrophoresis of native MDH
was carried out in polyacrylamide gel (9%) according
to a modified Davis method. The tetrazolium method
was used for specific development [18]. Electrophore-
sis in the presence of sodium dodecyl sulfate was used
for determining the molecular mass of the MDH sub-
unit [19].

 

Inhibitory analysis.

 

 In inhibition experiments, the
specific inhibitors itaconate (isocitrate lyase inhibitor)
and malonate (succinate dehydrogenase inhibitor) were
added to the cultivation medium at a concentration of
5 mmol/l.

RESULTS

The activity of the TCA and glyoxylate cycle
enzymes was found in the cells of 

 

R

 

. 

 

palustris

 

 f-8pt; the
dependences of the enzyme activities on growth condi-
tions, including the growth substrate used, were
revealed (Table 1). On the whole, the highest specific
activity of the TCA cycle enzymes was observed during
photoorganotrophic growth on succinate and acetate,
whereas cultivation on acetate only decreased the activ-
ity of the TCA cycle enzymes and increased the activity
of isocitrate lyase and malate synthase. The activity of

the key enzymes of the glyoxylate cycle was highest
during photoautotrophic growth and lowest during
photo- and chemoorganotrophic growth on succinate.

Homogeneous MDH preparations were obtained
from 

 

R

 

. 

 

palustris

 

 f-8pt cells using multistage purifica-
tion procedure. It was revealed by means of ion-
exchange chromatography through DEAE-Toyopearl
and gel chromatography through Sephadex G-200 that
MDH was represented by two isoforms with molecular
mass (Mr) values of 90 and 180 kDa. The Mr of the sin-
gle subunit, determined by electrophoresis in the pres-
ence of sodium dodecyl sulfate, constituted 47 kDa.
Hence, the enzyme dimeric and tetrameric isoforms
functioned in the cells; however, the presence of one or
another isoform depended on the composition of the
cultivation medium. The presence of the two forms of
the enzyme was confirmed by an electrophoretic study
that included specific MDH development (figure).

Experiments on the influence of inhibitors on the
ration of MDH forms under different cultivation condi-
tions showed that, when the bacteria grew in the pres-
ence of itaconate (the inhibitor of isocitrate lyase, one
of the key enzymes of the glyoxylate cycle), only the
dimeric MDH isoform could be revealed in the cells,
while cultivation of the bacteria in the presence of mal-
onate (the inhibitor of succinate dehydrogenase, one of
the key enzymes of the TCA cycle) resulted in the pres-
ence of only the tetrameric form of the enzyme. The
degree of inhibition of the TCA and glyoxylate cycles
was judged from the change in the activity of certain
enzymes in cells grown in the presence of the inhibi-
tors, as compared to normal cultivation conditions
(Table 2).

DISCUSSION

Analysis of the changes in the specific activity of the
TCA and glyoxylate cycle enzymes upon cultivation of
phototrophic purple nonsulfur bacteria under different
conditions showed that the TCA cycle enzymes were

 

Table 1.

 

  Specific activity (nmol/(min/mg protein)) of the TCA and glyoxylate cycle enzymes in 

 

R. palustris

 

 f-8pt grown un-
der different conditions

 Enzymes

Cultivation conditions

Phototrophic Chemotrophic

Acetate Succinate Acetate, 
succinate

Thiosulfate, 
bicarbonate Succinate Acetate, 

succinate

Malate dehydrogenase 46.3 

 

±

 

 1.4 71.1 

 

±

 

 2.1 83.6 

 

±

 

 2.5 55.10 

 

±

 

 1.65 29.8 

 

±

 

 0.9 28.00 

 

±

 

 0.84

Isocitrate dehydrogenase 5.40 

 

±

 

 0.16 21.60 

 

±

 

 0.65 32.9 

 

±

 

 1.0 4.20 

 

±

 

 0.13 37.5 

 

±

 

 1.1 26.00 

 

±

 

 0.78

Succinate dehydrogenase 1.10 

 

±

 

 0.03 10.20 

 

±

 

 0.31 8.90 

 

±

 

 0.27 2.20 

 

±

 

 0.07 2.10 

 

±

 

 0.06 1.70 

 

±

 

 0.05

Fumarate hydratase 17.1 

 

±

 

 0.5 42.60 

 

±

 

 1.28 37.4 

 

±

 

 1.1 16.2 

 

±

 

 0.5 28.0 

 

±

 

 0.8 45.9 

 

±

 

 1.4

Citrate synthase 13.8 

 

±

 

 0.4 15.4 

 

±

 

 0.5 16.30 

 

±

 

 0.49 7.80 

 

±

 

 0.23 8.30 

 

±

 

 0.25 5.7 

 

±

 

 0.2

Malate synthase 14.80 

 

±

 

 0.45 0.80 

 

±

 

 0.02 9.8 

 

±

 

 0.3 30.0 

 

±

 

 0.9 0.50 

 

±

 

 0.01 8.80 

 

±

 

 0.26

Isocitrate lyase 10.60 

 

±

 

 0.31 0.500 

 

±

 

 0.015 9.10 

 

±

 

 0.25 15.8 

 

±

 

 0.5 0.0 4.30 

 

±

 

 0.13
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constitutive, whereas the key enzymes of the glyoxylate
cycle proved to be inducible (Table 1). Apparently, the
TCA cycle, being the most important catabolic path-
way, is also necessary for the formation of precursors
for amino acid biosynthesis. Therefore, the TCA cycle
enzymes are synthesized virtually irrespectively of
growth conditions. The glyoxylate bypass, as an ana-
plerotic reaction sequence, is obligately necessary dur-
ing growth on acetate for replenishing the TCA cycle
intermediates expended for biosynthetic purposes [20].

We paid special attention to malate dehydrogenase,
since this enzyme allows the proceeding of both catab-
olism and anabolism. Earlier, we revealed functioning
of MDH isoforms differing in molecular mass in 

 

B. lep-
tomitiformis

 

 cells grown under different conditions [4].

The methods of gel chromatography and denaturing
electrophoresis showed that, in 

 

R. palustris

 

 cells,
dimeric and tetrameric forms of the enzyme function;
the presence of one or the other isoform is determined
by the type of nutrition and the nature of the growth
substrate, and, in turn, determines the predominance of
the TCA cycle or the glyoxylate cycle (Table 3). The
presence of two enzyme isoforms was revealed when
the bacteria grew on medium containing acetate + suc-
cinate, i.e., under conditions requiring the functioning
of both cycles, as well as during chemotrophic growth
on acetate, when the TCA cycle is necessary for provid-
ing the cells with energy and the glyoxylate cycle com-
pensates for the loss of TCA cycle intermediates
expended on biosynthetic needs. Only the dimeric form
was revealed when the bacteria were cultivated in the
presence of succinate in the dark or in the light. The
presence of the malate dehydrogenase dimer as the only
isoform correlated with the absence of the glyoxylate
bypass. In the case of growth on succinate in the dark,
succinate utilization is linked to the reactions of the
TCA cycle, whose functioning allows the bacterium
both to oxidize organic compounds and to form from
them precursors for further biosynthetic processes [20].
When growth occurs on succinate photosynthetically,
the TCA cycle only works to meet the biosynthetic
needs of the cell, because the bacteria get the energy by
means of photosynthetic light transformation. Tet-
rameric isoform functioning was revealed during pho-
totrophic growth on medium with acetate, when con-
structive metabolism occurs at the expense of the oper-
ation of the glyoxylate cycle, as well as under
photoautotrophic conditions, when the Calvin cycle
intermediates are the sources of the TCA cycle sub-
strates [1, 7].

 

1 2 3 4

 

Electrophoresis of the MDHs isolated from R. palustris
f-8pt cells grown under different conditions: (1) photoor-
ganotrophically on acetate and succinate; (2) chemoorga-
notrophically on succinate; (3) photoorganotrophically on
acetate; and (4) chemoorganotrophically on acetate and
succinate. 

Table 2.  Specific activity (nmol/(min mg protein)) of the TCA and glyoxylate cycle enzymes in R. palustris f-8pt grown in
the presence of inhibitors

Enzymes

Cultivation conditions

Light, anaerobically (acetate + succinate) Darkness, aerobically (acetate + succinate)

Without 
inhibitors Itaconate Malonate Without 

inhibitors Itaconate Malonate

Malate dehydrogenase 83.6 ± 2.5 60.3 ± 1.8 48.90 ± 1.47 28.00 ± 0.84 19.8 ± 0.6 9.6 ± 0.3

Isocitrate dehydrogenase 32.9 ± 1.0 28.8 ± 0.9 12.00 ± 0.36 26.00 ± 0.78 11.4 ± 0.34 0.4 ± 0.01

Succinate dehydrogenase 8.90 ± 0.27 4.30 ± 0.13 0.40 ± 0.01 1.70 ± 0.05 1.0 ± 0.04 0.7 ± 0.02

Fumarate hydratase 37.4 ± 1.1 47.8 ± 1.4 0.0 45.9 ± 1.4 71.3 ± 2.2 8.5 ± 0.2

Citrate synthase 16.30 ± 0.49 13.9 ± 0.4 21.70 ± 0.65 5.7 ± 0.2 7.6 ± 0.23 1.3 ± 0.04

Malate synthase 9.8 ± 0.3 0.0 5.40 ± 0.16 8.80 ± 0.26 0.0 4.1 ± 0.12

Isocitrate lyase 9.10 ± 0.25 1.10 ± 0.03 9.60 ± 0.30 4.30 ± 0.13 0.8 ± 0.02 2.5 ± 0.07
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The use of inhibitory analysis, which gives the
opportunity to selectively switch off individual meta-
bolic pathways, allowed the functional role of the MDH
dimeric and tetrameric isoforms to be determined.
When the bacterium was grown on the acetate and suc-
cinate in the presence of malonate (TCA cycle inhibi-
tor), only the tetrameric form of the enzyme was
revealed in the cells, while in the presence of itaconate
(glyoxylate cycle inhibitor), only the MDH homodimer
was revealed.

Thus, structural and functional changes in the
malate dehydrogenase system were revealed in
R. palustris cells, which are able to switch over their
metabolic flows during growth under different condi-
tions. It was shown that, in this bacterium, the dimeric
form of the enzyme ensures the proceeding of the TCA
cycle reactions, and the MDH tetrameric form provides
for functioning of anabolic pathways. Pronounced cor-
relation was revealed between the induction of the gly-
oxylate cycle and the formation of the MDH tetrameric
isoform.
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